On Ruckle's Conjecture on Accumulation Games

نویسندگان

  • Steve Alpern
  • Robbert Fokkink
  • Ken Kikuta
چکیده

In an accumulation game, the Hider secretly distributes his given total wealth h among n locations, while the Searcher picks r locations and confiscates the material placed there. The Hider wins if what is left at the remaining n − r locations is at least 1; otherwise the Searcher wins. Ruckle’s Conjecture says that an optimal Hider strategy is to put an equal amount h/k at k randomly chosen locations, for some k. We extend the work of Kikuta and Ruckle by proving the Conjecture for several cases, among others: r = 2 or n − 2; n ≤ 7; n = 2r − 1; h < 2 + 1/ (n− r − 1) and n ≤ 2r. The last result uses the Erdos-Ko-Rado theorem. We establish a connection between Ruckle’s Conjecture and the difficult Hoeffding problem of bounding tail probabilities of sums of random variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Complexity of Unique Games and Graph Expansion

Understanding the complexity of approximating basic optimization problems is one of the grand challenges of theoretical computer science. In recent years, a sequence of works established that Khot’s Unique Games Conjecture, if true, would settle the approximability of many of these problems, making this conjecture a central open question of the field. The results of this thesis shed new light o...

متن کامل

Unique Games on the Hypercube

In this paper, we investigate the validity of the Unique Games Conjecture when the constraint graph is the boolean hypercube. We construct an almost optimal integrality gap instance on the Hypercube for the Goemans-Williamson semidefinite program (SDP) for Max-2-LIN(Z2). We conjecture that adding triangle inequalities to the SDP provides a polynomial time algorithm to solve Unique Games on the ...

متن کامل

On Khot’s Unique Games Conjecture

In 2002, Subhash Khot formulated the Unique Games Conjecture, a conjecture about the computational complexity of certain optimization problems. The conjecture has inspired a remarkable body of work, which has clarified the computational complexity of several optimization problems and the effectiveness of “semidefinite programming” convex relaxations. In this paper, which assumes no prior knowle...

متن کامل

Computational topology and the Unique Games Conjecture

Covering spaces of graphs have long been useful for studying expanders (as “graph lifts”) and unique games (as the “label-extended graph”). In this paper we advocate for the thesis that there is a much deeper relationship between computational topology and the Unique Games Conjecture. Our starting point is Linial’s 2005 observation that the only known problems whose inapproximability is equival...

متن کامل

On some generalisations of Brown's conjecture

Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2010